Constructing Non-semisimple Modular Categories with Local Modules

نویسندگان

چکیده

We define the class of rigid Frobenius algebras in a (non-semisimple) modular category and prove that their categories local modules are, again, modular. This generalizes previous work Kirillov Ostrik (Adv Math 171(2):183–227, 2002) semisimple setup. Examples non-semisimple via modules, as well connections to authors’ prior on relative monoidal centers, are provided. In particular, we classify Drinfeld centers module over group algebras, thus generalizing classification by Davydov (J Algebra 323(5):1321–1348, 2010) arbitrary characteristic.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finitely semisimple spherical categories and modular categories are self - dual

We show that every essentially small finitely semisimple k-linear additive spherical category in which k = End(1) is a field, is equivalent to its dual over the long canonical forgetful functor. This includes the special case of modular categories. In order to prove this result, we show that the universal coend of the spherical category with respect to the long forgetful functor is self-dual as...

متن کامل

On Semi-artinian Weakly Co-semisimple Modules

We show that every semi-artinian module which is contained in a direct sum of finitely presented modules in $si[M]$, is weakly co-semisimple if and only if it is regular in $si[M]$. As a consequence, we observe that every semi-artinian ring is regular in the sense of von Neumann if and only if its simple modules are $FP$-injective.

متن کامل

On non-semisimple fusion rules and tensor categories

Category theoretic aspects of non-rational conformal field theories are discussed. We consider the case that the category C of chiral sectors is a finite tensor category, i.e. a rigid monoidal category whose class of objects has certain finiteness properties. Besides the simple objects, the indecomposable projective objects of C are of particular interest. The fusion rules of C can be block-dia...

متن کامل

Finding Modules in Networks with Non-modular Regions

Most network clustering methods share the assumption that the network can be completely decomposed into modules, that is, every node belongs to (usually exactly one) module. Forcing this constraint can lead to misidentification of modules where none exist, while the true modules are drowned out in the noise, as has been observed e. g. for protein interaction networks. We thus propose a clusteri...

متن کامل

A construction of semisimple tensor categories

Let A be an abelian category such that every object has only finitely many subobjects. From A we construct a semisimple tensor category T . We show that T interpolates the categories Rep(Aut(p), K) where p runs through certain projective pro-objects of A. This extends a construction of Deligne for symmetric groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2023

ISSN: ['0010-3616', '1432-0916']

DOI: https://doi.org/10.1007/s00220-023-04824-4